Articolo
Come cogliere le opportunità emergenti del Digitale
A SAVE 2023 - 18 e 19 ottobre, Fiera di Verona - le novità e soluzioni 4.0 È l'intelligenza artificiale uno dei temi più caldi del mondo digitale. Questa tecnologia, nelle sue molteplici derivazioni e interpretazioni, sta giocando un ruolo chiave per automatizzare l'analisi dei dati provenienti da sensori, sistemi e macchinari industriali, predire guasti e malfunzionamenti prima che si verifichino, ottimizzare i processi produttivi, personalizzare i prodotti e i servizi per i clienti.
Tipicamente, nell'Industria 4.0 le tecnologie digitali costituiscono una leva essenziale per minimizzare l'uso di energia, acqua e materie prime, ridurre le emissioni inquinanti, organizzare al meglio il fine vita del prodotto.
La digitalizzazione della manifattura porta a una maggiore flessibilità della produzione, e ciò determina sia un miglioramento della produttività. Inoltre, il numero crescente di sensori e, in generale, di fonti dati disponibili, rendono sempre più dettagliata la visione virtuale di macchine, sistemi e processi. D'altra parte i sistemi e le architetture per l'elaborazione dei dati stanno diventando sempre più complessi e solo con dati pertinenti, di alta qualità e utili è possibile svilupparne il potenziale economico.
Una buona pratica consiste nel determinare in anticipo quali informazioni sono rilevanti per l'applicazione, in che punto del flusso di dati possono essere estratte e con quali algoritmi di Intelligenza Artificiale e Machine Learning possono essere elaborate. Ciò significa raffinare i dati ovvero trasformare i Big Data in Smart Data.
Secondo McKinsey, il business potenziale dell'integrazione della Data Analytics nei processi aziendali sarà stimabile in un range che varia dai 9,5 ai 15,4 miliardi di dollari. Cifre decisamente importanti, dove le applicazioni basate sulla AI dovrebbero incidere per circa il 40% del totale.
Ma non è solo una questione di produttività. Alla base di questa evoluzione vi è un'enorme quantità di dati, quelli prodotti prima nella fabbrica intelligente dall'IoT, poi dai consumatori durante il customer journey. Per questo la fabbrica intelligente non basta: per cogliere appieno i benefici della transizione digitale è l'impresa nella sua globalità che deve diventare non solo più produttiva ma anche più sostenibile.
Manutenzione
Nel caso della manutenzione, gli algoritmi di intelligenza artificiale possono sfruttare i dati provenienti dalle attività di monitoraggio e diagnostica consentono di programmare interventi in campo, evitando costose trasferte di operatori o tempi di fermo non pianificati. Grazie al valore di questi dati, il personale addetto alla manutenzione può identificare le cause dei malfunzionamenti e utilizzare l'analisi predittiva per evitare futuri problemi.
Il punto è dunque come mettere in connessione l'ottimizzazione delle risorse secondo lo schema manutenzione-prolungamento di vita-riciclo, con una produzione tecnologicamente avanzata caratterizzata dall'uso massivo di informazioni e di oggetti interconnessi.
Visione e Identificazione
In termini di trend emergenti, nel corso degli ultimi anni l'Intelligenza Artificiale si è aperta ad applicazioni integrate con IoT, Realtà Aumentata (AR) e Computer Vision (CV).
Le soluzioni ibride AI-AR scalabili saranno fondamentali per tracciare, mappare e misurare più accuratamente gli oggetti, non solo per identificarli, consentendo un necessario cambiamento di modello e ampliando l'impatto dell'AR sull'ambiente che ci circonda.
Queste innovative applicazioni AR raggiungeranno il loro pieno potenziale integrandosi con tecnologie complementari. L'IIoT fornirà monitoraggio in tempo reale e dati operativi dell'oggetto riconosciuto attraverso l'AR, oltre a fornire un link verso altre altre informazioni rilevanti a livello aziendale, come supply chain e logistica e mettendo le basi per la convergenza tra mondo fisico e digitale.
I sistemi no-code
In tempi più recenti la diffusione di interfacce no-code inizia a prefigurare una gestione inedita e potente in termini di processi decisionali, analisi scenari e definizione di KPI.
Lo sviluppo software tradizionale richiede tempi e costi che, in molti casi, non giustificano lo sforzo intrapreso, a cominciare dalle piccole start-up e da buona parte delle PMI.
Ecco che lo scenario dello sviluppo delle applicazioni sta rapidamente cambiando, con l'avvento e la diffusione delle tecnologie low code e no code AI, che stanno portando un'innovazione di straordinaria portata, consentendo agli utenti di crearsi in autonomia le applicazioni, senza disporre di avanzate conoscenze nei linguaggi di programmazione. Molti analisti vedono nello sviluppo low code e no code il futuro della creazione del software, con enormi benefici in termini di massimizzazione del ROI in tempi estremamente contenuti.
AI conversazionale
Attraverso le nascenti piattaforme di AI conversazionale (tecnologia che include chatbot o agenti virtuali, con cui gli utenti possono interloquire) sarà possibile migliorare la qualità del servizio clienti e aumentare la produttività, collegando ad esempi FAQ, descrizioni dei prodotti, documentazione interna o conversazioni di esempio
Operativamente si tratterà di aggiornare contenuti, connettersi a nuovi canali, integrare sistemi e tracciare KPI, anche in questo caso senza necessità di conoscenze avanzate di programmazione.
Il miglioramento delle prestazioni di modelli AI conversazionale e ML (Machine Learning) inizia con la comprensione e l'interazione con il testo.
Utilizzando le tecniche analitiche di AI conversazionale, è possibile capire fino a che punto i clienti sono soddisfatti dopo aver interagito con assistenti virtuali e chatbot.
L'analisi dei chatbot aiuta a misurare i KPI in termini ad esempio di lead generati, problemi risolti o costi per problema. Una volta implementato il chatbot, è possibile misurarne le prestazioni con l'aiuto di metriche per monitorare il tempo di risposta, il tasso di conversione, il miglioramento dell'efficienza e altri parametri.
Armando Martin - Giornalista scientifico, consulente industriale
Vi aspettiamo a SAVE 2023.
Tipicamente, nell'Industria 4.0 le tecnologie digitali costituiscono una leva essenziale per minimizzare l'uso di energia, acqua e materie prime, ridurre le emissioni inquinanti, organizzare al meglio il fine vita del prodotto.
La digitalizzazione della manifattura porta a una maggiore flessibilità della produzione, e ciò determina sia un miglioramento della produttività. Inoltre, il numero crescente di sensori e, in generale, di fonti dati disponibili, rendono sempre più dettagliata la visione virtuale di macchine, sistemi e processi. D'altra parte i sistemi e le architetture per l'elaborazione dei dati stanno diventando sempre più complessi e solo con dati pertinenti, di alta qualità e utili è possibile svilupparne il potenziale economico.
Una buona pratica consiste nel determinare in anticipo quali informazioni sono rilevanti per l'applicazione, in che punto del flusso di dati possono essere estratte e con quali algoritmi di Intelligenza Artificiale e Machine Learning possono essere elaborate. Ciò significa raffinare i dati ovvero trasformare i Big Data in Smart Data.
Secondo McKinsey, il business potenziale dell'integrazione della Data Analytics nei processi aziendali sarà stimabile in un range che varia dai 9,5 ai 15,4 miliardi di dollari. Cifre decisamente importanti, dove le applicazioni basate sulla AI dovrebbero incidere per circa il 40% del totale.
Ma non è solo una questione di produttività. Alla base di questa evoluzione vi è un'enorme quantità di dati, quelli prodotti prima nella fabbrica intelligente dall'IoT, poi dai consumatori durante il customer journey. Per questo la fabbrica intelligente non basta: per cogliere appieno i benefici della transizione digitale è l'impresa nella sua globalità che deve diventare non solo più produttiva ma anche più sostenibile.
Manutenzione
Nel caso della manutenzione, gli algoritmi di intelligenza artificiale possono sfruttare i dati provenienti dalle attività di monitoraggio e diagnostica consentono di programmare interventi in campo, evitando costose trasferte di operatori o tempi di fermo non pianificati. Grazie al valore di questi dati, il personale addetto alla manutenzione può identificare le cause dei malfunzionamenti e utilizzare l'analisi predittiva per evitare futuri problemi.
Il punto è dunque come mettere in connessione l'ottimizzazione delle risorse secondo lo schema manutenzione-prolungamento di vita-riciclo, con una produzione tecnologicamente avanzata caratterizzata dall'uso massivo di informazioni e di oggetti interconnessi.
Visione e Identificazione
In termini di trend emergenti, nel corso degli ultimi anni l'Intelligenza Artificiale si è aperta ad applicazioni integrate con IoT, Realtà Aumentata (AR) e Computer Vision (CV).
Le soluzioni ibride AI-AR scalabili saranno fondamentali per tracciare, mappare e misurare più accuratamente gli oggetti, non solo per identificarli, consentendo un necessario cambiamento di modello e ampliando l'impatto dell'AR sull'ambiente che ci circonda.
Queste innovative applicazioni AR raggiungeranno il loro pieno potenziale integrandosi con tecnologie complementari. L'IIoT fornirà monitoraggio in tempo reale e dati operativi dell'oggetto riconosciuto attraverso l'AR, oltre a fornire un link verso altre altre informazioni rilevanti a livello aziendale, come supply chain e logistica e mettendo le basi per la convergenza tra mondo fisico e digitale.
I sistemi no-code
In tempi più recenti la diffusione di interfacce no-code inizia a prefigurare una gestione inedita e potente in termini di processi decisionali, analisi scenari e definizione di KPI.
Lo sviluppo software tradizionale richiede tempi e costi che, in molti casi, non giustificano lo sforzo intrapreso, a cominciare dalle piccole start-up e da buona parte delle PMI.
Ecco che lo scenario dello sviluppo delle applicazioni sta rapidamente cambiando, con l'avvento e la diffusione delle tecnologie low code e no code AI, che stanno portando un'innovazione di straordinaria portata, consentendo agli utenti di crearsi in autonomia le applicazioni, senza disporre di avanzate conoscenze nei linguaggi di programmazione. Molti analisti vedono nello sviluppo low code e no code il futuro della creazione del software, con enormi benefici in termini di massimizzazione del ROI in tempi estremamente contenuti.
AI conversazionale
Attraverso le nascenti piattaforme di AI conversazionale (tecnologia che include chatbot o agenti virtuali, con cui gli utenti possono interloquire) sarà possibile migliorare la qualità del servizio clienti e aumentare la produttività, collegando ad esempi FAQ, descrizioni dei prodotti, documentazione interna o conversazioni di esempio
Operativamente si tratterà di aggiornare contenuti, connettersi a nuovi canali, integrare sistemi e tracciare KPI, anche in questo caso senza necessità di conoscenze avanzate di programmazione.
Il miglioramento delle prestazioni di modelli AI conversazionale e ML (Machine Learning) inizia con la comprensione e l'interazione con il testo.
Utilizzando le tecniche analitiche di AI conversazionale, è possibile capire fino a che punto i clienti sono soddisfatti dopo aver interagito con assistenti virtuali e chatbot.
L'analisi dei chatbot aiuta a misurare i KPI in termini ad esempio di lead generati, problemi risolti o costi per problema. Una volta implementato il chatbot, è possibile misurarne le prestazioni con l'aiuto di metriche per monitorare il tempo di risposta, il tasso di conversione, il miglioramento dell'efficienza e altri parametri.
Armando Martin - Giornalista scientifico, consulente industriale
Vi aspettiamo a SAVE 2023.
Benedetta Rampini - Eiom
Guarda tutti i contenuti Eiom sul sito SAVE News
Guarda tutti i contenuti Eiom sul sito SAVE News
Articoli tecnico scientifici o articoli contenenti case history
Editoriale Armando Martin - Giornalista scientifico e consulente industriale
Ultimi articoli e atti di convegno
La prevenzione delle esplosioni nei luoghi di lavoro al chiuso
La prevenzione delle esplosioni si basa principalmente sull'evitare la presenza di sorgenti di innesco efficaci e sul ridurre la probabilità di...
Potenzialità dell'integrazione di accumuli termo-elettrici nei sistemi multi-energia
I sistemi di accumulo termo-elettrico permettono di stoccare energia elettrica e restituirla sotto forma elettrica o termica, agendo quindi da...
Un gruppo esperto, forte, aperto e internazionale
Jeremias è un gruppo industriale con sede in Germania con più di 50 anni di esperienza nella progettazione, produzione e sviluppo di soluzioni per...
FLEXSTAR la tubazione preisolata, flessibile e stabile ideale per il comparto termico.
La tubazione è stata impiegata nei lavori di riqualificazione degli impianti termoidraulici di servizio di un antico casolare in campagna. Installati...
Una storia di innovazione e sostenibilità dal 1934 a oggi
Fondata nel 1934, Armstrong Fluid Technology ha attraversato quasi un secolo di trasformazione e crescita, passando da una piccola azienda...
Cambiamento climatico e rischio NaTech
Gli eventi NaTech possono essere definiti: "Incidenti tecnologici, che possono verificarsi all'interno di complessi industriali e lungo le reti di...
Le catene del valore sicure del gas e del GNL richiedono una maggiore cooperazione internazionale
L'architettura della sicurezza dell'approvvigionamento globale di gas deve essere attentamente rivalutata
L'invasione su vasta scala dell'Ucraina da...
Monitoraggio e controllo emissioni a tutela e controllo dell'ambiente: tre domande ad Alessandro Piva di Fer Strumenti
In vista dell'appuntamento mcTER EXPO - Fiera Internazionale Efficienza Energetica e alle Rinnovabili in programma a Veronafiere il prossimo 16 e 17...
Datanetwork: gestire le comunità energetiche in Italia?
Una questione di trasparenza e fiducia. Con le nostre soluzioni digitali e gli strumenti innovativi è possibile
Datanetwork: Soluzioni Digitali per una Transizione Energetica Sostenibile
L'azienda siracusana sviluppa soluzioni in grado di rispondere alle esigenze di un mercato elettrico orientato sempre più alla sostenibilità
Case Study: Teleriscaldamento
Fornitura e posa in opera di due camini autoportanti, per l'evacuazione dei fumi di un motore a combustione interna, in una nuova sezione di un...