Articolo

Progettazione di uno scambiatore di calore ottimizzato mediante fluidodinamica numerica

Gli scambiatori di calore sono dispositivi ampiamente utilizzati nell'industria di processo, per trasferire calore tra fluidi a temperature diverse, consentendo in tal modo il recupero di energia che altrimenti andrebbe persa. Questo lavoro fa uso di approcci numerici per la progettazione di uno scambiatore di calore ottimizzato mediante l'applicazione di appendici aerodinamiche, in grado di migliorare notevolmente l'efficienza dello stesso. Gli scambiatori di calore sono apparecchiature utilizzate in numerosi
processi industriali, al fine di trasferire calore tra uno o più fluidi operativi, con lo scopo di ottenere un recupero energetico.

L'entità di tale recupero dipende dall'efficienza dello scambiatore, a sua volta funzione delle caratteristiche geometriche e delle condizioni operative di impiego del dispositivo. La ricerca di prestazioni sempre più elevate spinge la ricerca verso l'individuazione di geometrie ottimizzate, anche mediante l'adozione di appendici quali turbolatori o generatori di vortici che
favoriscano l'incremento dello scambio termico.

Queste appendici vengono solitamente installate sulle superfici degli elementi scambianti per aumentare significativamente la turbolenza del flusso, favorendo la transizione dal regime laminare a quello turbolento anche a bassi numeri di Reynolds e, di conseguenza, l'effetto di mescolamento. L'aumento di turbolenza è però sempre accompagnato da un incremento delle perdite di carico e quindi della potenza richiesta per la circolazione dei fluidi operativi. L'ottimizzazione di uno scambiatore di calore deve quindi essere orientata all'ottenimento del maggior scambio termico possibile col minor incremento delle perdite di carico,
in considerazione anche delle esigenze legate alla fattibilità costruttiva del dispositivo.

Il presente articolo è incentrato su uno studio fluidodinamico basato su tecniche di Computational Fluid Dynamics (CFD), avente lo scopo di incrementare le prestazioni di uno scambiatore di calore fumi-aria a piastre lisce, tramite l'utilizzo di appendici aerodinamiche. La prima parte del lavoro è dedicata al confronto di differenti geometrie di turbolatori e generatori di vortici mediante l'esecuzione di simulazioni numeriche semplificate, al fine di individuare la configurazione che permetta di ottimizzare le prestazioni rispetto alla piastra liscia. La seconda parte riporta un confronto fra la piastra liscia e le migliori configurazioni precedentemente individuate, basato sulla simulazione CFD di uno scenario numerico rappresentativo del funzionamento dell'intero scambiatore.

Lo studio è stato eseguito con riferimento a uno scambiatore a piastre a flussi incrociati, il cui elemento base è costituito da una coppia di vani a sezione rettangolare, con rapporto di aspetto elevato (circa pari a 40), separati da una piastra metallica. All'interno dei condotti scorrono rispettivamente i fumi di scarico di un processo industriale e l'aria da preriscaldare diretta al bruciatore. A partire da una configurazione di riferimento caratterizzata da pareti lisce, sono state valutate e confrontate le prestazioni raggiungibili mediante l'applicazione di diverse appendici per l'incremento dello scambio termico, attraverso la modellazione e la simulazione CFD di una porzione del vano di passaggio dei fumi (Figura 1).
Per tutti i casi, il dominio di calcolo è stato discretizzato con griglie interamente strutturate e nel rispetto di parametri dimensionali derivanti da un accurato studio di sensibilità della soluzione. Le simulazioni sono state effettuate tramite l'utilizzo dei metodi ai volumi finiti offerti dal software Ansys Fluent.
Le equazioni risolte sono quelle RANS, associate al modello di chiusura k-?, dimostratosi più efficacie nella modellazione degli effetti della turbolenza. Il fumo è stato modellato come gas ideale, con proprietà termodinamiche variabili in funzione della temperatura.
Articoli tecnico scientifici o articoli contenenti case history
Ultimi articoli e atti di convegno

Misura e verifica nei risparmi energetici

- Misura e verifica - IPMVP - Approcci e tipologia di "risparmi" - Isolamento, possibili casi

I Certificati Bianchi a sostegno dell'efficienza energetica: risultati e strumenti

- L'evoluzione del meccanismo - Introduzione al meccanismo dei certificati bianchi, cos'è e come funziona

L'annoso tema della prova

1.1 Una storia unica 1.2 Rödl & Partner nel mondo 1.3 Rödl & Partner in Italia 1.4 I nostri servizi 1.5 I nostri servizi energy

Panoramica sulle guide operative e sugli strumenti a disposizione.

I progetti standardizzati aggiornati e di nuova pubblicazione. Interventi collegati all'efficienza energetica nel settore idrico D.M. 21 maggio 2021...

Mercato interno dell'energia

Per armonizzare e liberalizzare il proprio mercato interno dell'energia, l'Unione europea ha adottato misure per creare un mercato competitivo,...

Piccole e Medie Imprese, grandi energie.

Il presente documento sintetizza lo stato dell'arte delle configurazioni per l'autoconsumo diffuso con un focus operativo sulle Comunità Energetiche...

Le comunità energetiche rinnovabili: sviluppo e quadro normativo

- Il cammino normativo - IL D. Gls 8/9/2021 N. 199 E LA RED III - Le regole tecniche - Il decreto MASE

Analisi del nuovo schema incentivante CER

Caratteristiche delle configurazioni e degli impianti ammessi all'incentivo Modalità di accesso agli incentivi Caratteristiche dell'incentivo

Caratteristiche termiche dei materiali isolanti sotto la lente

È stato recentemente pubblicato il rapporto tecnico UNI/TR 11936 "Materiali isolanti e finiture per l'edilizia ? Linee guida" per verificare la...

Sistemi di abbattimento fumi/emissioni nocive in accordo con gli standard e le normative locali

Da oltre 50 anni il Gruppo Miretti ha sviluppato specifiche conoscenze e competenze di alto livello nei sistemi di abbattimento e riduzione dei fumi e...