Articolo

La protezione dai fulmini di impianti petrolchimici eseguita in conformità alla Norma CEI EN 62305

3.1.3

Quando il rischio risulta elevato

Considerazioni per la realizzazione del corretto LPS

NaTech
Incidenti tecnologici come incendi, esplosioni e rilasci tossici, che possono verificarsi all'interno di stabilimenti industriali a seguito di disastri naturali.
La Direttiva Seveso III 2012/18/UE impone un obbligo al gestore del sito di identificare i pericoli e valutare i principali rischi per tenere conto dei rischi NaTech.

La valutazione del rischio ai sensi della norma CEI EN 62305-2

Il pericolo per la struttura può consistere in:
- danno alla struttura ed al suo contenuto
- guasti dei relativi impianti elettrici ed elettronici
- danno agli esseri viventi all'interno o in prossimità della struttura

3.1.3
strutture pericolose per l'ambiente
Strutture che, in conseguenza di una fulminazione, possono dar luogo ad emissioni biologiche, chimiche o radioattive (come ad esempio impianti chimici, petrolchimici, nucleari, ecc.)

Quando il danno ad una struttura dovuto al fulmine si può estendere alle strutture circostanti
o all'ambiente (es. emissioni chimiche o radioattive), la valutazione della perdita totale dovrebbe tenere conto delle perdite addizionali.
(nel PDF la formula per la valutazione del rischio)

Quando il rischio risulta elevato

La sensibilità e la severità dei siti RIR richiede un'analisi molto approfondita degli effetti del fulmine e delle conseguenze a cui esso può portare.

Le tempistiche a disposizione non ci consentono tale analisi, ma cercheremo qui di seguito di evidenziare tutti i punti di cui tenere conto.

Considerazioni per la realizzazione del corretto LPS

1. Dimensionare il sistema di protezione in funzione del livello di protezione (LPL) richiesto della verifica dei rischi effettuata secondo il capitolo 2 della norma CEI EN 62305.
2. Definire il sistema di captazione (punti d'impatto) in funzione delle caratteristiche della copertura (conduttiva o non conduttiva, combustibile o non combustibile)
3. Definire il sistema di captazione in funzione degli impianti presenti in copertura, in quanto elementi elettricamente continui con I'interno "
4. Definire il sistema di captazione tenendo conto delle aree con pericolo d'esplosione, siano esse esposte o raggiungibili dal fulmine tramite conduttori metallici (camini, sfiati, cavi | elettrici, ecc.). In queste impianti è importante posizionare i punti d'impatto almeno un L metro oltre il volume dell'atmosfera esplosiva [
5. In ambienti in cui sono contenuti esplosivi solidi, adottare soluzioni per attenuare il Piu f \ 1 possibile gli effetti capacitivi ed induttivi dovuti alla corrente da fulmine. Adottare criteri di schermatura
6. Su impalcati e terrazzi definire il sistema di protezione tenendo conto del rischio di caduta dovuto allo spostamento d'aria provocato dal fulmine
7. Su impalcati e terrazzi tenere conto del rischio di elettrocuzione e di fulminazione diretta delle persone
8. Definire il posizionamento di ogni singolo captatore nei punti più esposti (colmi e bordi) verificando costantemente il rispetto della distanza di sicurezza (s)
9. Definire il posizionamento di ogni singolo captatore cercando di ottimizzarne la quantità e cercando di evitare di portare la corrente da fulmine dove normalmente non andrebbe.
10. Definire il posizionamento di ogni singolo captatore tenendo conto del lavoro in quota e delle difficolta d'installazione in genere
11. Verificare la correttezza dei punti d'impatto e del volume protetto applicando il metodo della sfera rotolante
12. Valutare se la struttura può essere un elemento naturale di calata (prove a vista e prove di continuità)
13. Verificare la sovratemperatura nei conduttori soggetti alla corrente da fulmine quando questi dovessero passare vicini ad elementi combustibili (impermeabilizzazioni o cappotto) o a atmosfere esplosive
14. Verificare l'integrità e I'efficacia del sistema disperdente e dei collegamenti equipotenziali di terra
15. Analizzare il pericolo delle tensioni di passo e contatto
16. Dimensionare correttamente gli SPD nei servizi entranti (capacita di scarica secondo LPL richiesto da VdR, tenuta al corto circuito, livello di protezione (Up), distanza protetta, sicurezza ai contatti indiretti, fusibile di backup)
17. Dimensionare correttamente gli SPD negli impianti interni (capacita di scarica secondo LPL richiesto da VdR, livello di protezione (Up), distanza protetta, sicurezza ai contatti indiretti, fusibile di backup)
18. Verificare il corretto coordinamento tra gli SPD sui servizi entranti e quelli sugli impianti interni e la distanza protetta in funzione delle apparecchiature da proteggere
Articoli tecnico scientifici o articoli contenenti case history
mcT Oil & Gas novembre 2024 Il ruolo dell'Oil & Gas nella transizione ecologica
Ultimi articoli e atti di convegno

L'efficientamento energetico nelle strutture sportive: un caso studio sulla microcogenerazione

Sustainable and Reliable Energy Solutions TEDOM Global network case history

Cogenerazione tra incentivi e innovazione: la progettazione per massimizzare l'efficienza degli impianti

- Certificati Bianchi: sintesi del meccanismo e focus su alto rendimento e autoconsumo - Meccanismo premiante per il biogas: Legge n. 145/2018 e...

Strategie di Manutenzione - Massima Efficienza al Minimo Impatto

Come trasformare la manutenzione industriale da costo a leva strategica per l'efficienza Durante il webinar "Strategie di Manutenzione: Massima...

L'attività CTI 2024-2025 a supporto della transizione energetica

La relazione annuale presentata dal Consiglio CTI all'Assemblea Soci lo scorso 14 aprile e da questa approvata all'unanimità sancisce formalmente...

Appuntamento il 26 giugno con mcTER Milano

mcTER Milano è la giornata leader per le tematiche energetiche: Cogenerazione, Efficienza Energetica, Idrogeno, Bioenergie e Rinnovabili

Istituto Giordano da oltre 60 anni al servizio della termotecnica

L'Istituto Giordano nasce nel 1959 a Bellaria-Igea Marina come studio termotecnico, su iniziativa dell'imprenditore Vito Lorenzo Giordano. Dopo aver...

Motori a combustione interna e transizione energetica: il contributo delle università italiane

La Giornata di Studio promossa da AIMSEA (Associazione Italiana delle Macchine a fluido e dei sistemi per l'Energia e l'Ambiente), tenutasi il 15...

Sviluppi del nucleare nel mondo a maggio 2025 e nuovo approccio in Italia

L'articolo aggiorna la situazione mondiale del nucleare per usi civili a livello globale e per le differenti nazioni riassumendo in particolare lo...

Intelligenza artificiale: una risorsa che accelera la sostenibiltà e avvicina il domani

È un'abitudine, per chi si è occupato per tanti anni di normazione tecnica, affrontare gli argomenti, scorrendo anche gli standard che li trattano....

La sostenibilità dei biocarburanti

I biocarburanti rappresentano una delle soluzioni più discusse per la decarbonizzazione del settore dei trasporti, prodotti da biomasse, offrono...

Accelerazioni e ostacoli alla transizione energetica

La International Energy Agency ha organizzato insieme al governo del Regno Unito il 24 e 25 aprile, un momento di riflessione sulla cooperazione...